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Conservation of Complex Power Technique for
Waveguide Junctions with Finite

Wall Conductivity

J. DOUGLAS WADE, MEMBER, IEEE, AND ROBERT H. MACPHIE, SENIOR MEM13ER,IEEE

Ab.vtract — Scattering at the junction of two wavegnides with finite wall

conductivity is rigorously treated using E-field mode matching and the

conservation of complex power technique. At the transverse junction

discontinuity between the two wavegnides the complex power absorbed by

the junction wall is taken into account along with the usual transfer of

complex power from one guide to the other. This leads to a generalized

form of the scattering matrix [S] of the lossy junction which incorporates

the surface impedance Z“, of the transverse metallic wall, assumed to be a

good conductor. The specific case of a copper transverse diaphragm with

centered circular iris in X-band guide is considered and the equivalent

TE lo shunt admittance is computed. Numerical results are also given for

lossy X-band cavity resonators with circufar coupling holes.

I. INTRODUCTION

I N RECENT YEARS a considerable number of wave-

guide scattering problems have been successfully han-

dled in a rigorous fashion by combining mode matching of

the transverse electric fields at a given waveguide junction

with enforcement of the conservation of complex power at

the same discontinuity [1]–[3]. This conservation of com-

plex power technique (CCPT) has, in particular, provided

a formally exact solution to the problem of scattering at

circular-to-rectangular waveguide junctions and to the re-

lated problem of scattering at a thick diaphragm with a

circular coupling hole in a rectangular waveguide [4].

However, in this and all earlier work, the walls of both

the waveguides themselves and of the transverse disconti-

nuities, e.g. diaphragms, were assumed to be perfectly

conducting. This is quite valid for a large number of cases

such as simple junctions between waveguides of different

cross sections or at single diaphragms. For good conduc-

tors (copper, silver) the scattering matrices of such config-

urations would be virtually identical to those for the ideal-

ized perfectly conducting case. For cavity resonators and

filters, however, the wall losses on both the end plates and

on the waveguide walls themselves are significant.

It is the purpose of this paper to extend the conservation

of complex power technique to include the effects of the
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Fig. 1, (a) The Junction of two waveguidss. (b) The junction plane at
Z=o.

conductivity of the metal from which such waveguide

components are fabricated. Particular attention will be

paid to the circular-to-rectangular waveguide junction

problems treated in [4] for the losdess case, but the gener-

alization is valid for virtually any problem which can be

treated by the original conservation of’ complex power

technique.

II. MODAL EXPANSIONS (OF THE FIELDS

Consider a junction of two w~veguides at z = O, as

shown in Fig. 1. In guide 1 the transverse electric and

magnetic fields at z = O_ can be written as

Er1=~(aj+ai)f3Ln (1)
n

Similarly, in guide 2, just to the right of the junction at
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2=() +, we have

E12=~(c~+c~)e2~ (3)

q

> PI —jH,2=X(c~–c~)Y2~Xe2~. (4) DZ
q

,,,,!,

In (l)–(4) a time dependence of exp (jut) is assumed and
,,I

+ and – indicate waves which are incident on and GUIDE 1 ~

reflected from the junction respectively. The vector func- P1=P2+PW ~

tions elfl and ezq are the transverse modal E fields (TE GUIDE 2
and/or TM) in guides 1 and 2 respectively, and the modal

admittances are
Fig. 2. Conservation of complex power at the junction of two wave-

guides.

E
Y1Ill

(TE modes)
@P,

ye, = (5)
Due to mode orthogonality this simplifies to

ju~,
(TM modes) c;+c; =xMmn(a: +a; )+zmxw.qY2q(c; -c;)

. .
\ Yml n q

for m=l,2,3, . . . and i=l,2.

In this paper we assume that the losses are due to wall where

conductivity y and so the permeability p, and permittivity El

in (5) are both real. The modal propagation constant yl~ is Mm. = ~ezm”el,,ds, Wmq = /e2~. e2q ds.

complex due to the wall losses. A w

However, we will make the reasonable assumption that In matrix notation we can rewrite (11) as follows:
the wall losses are relatively small and that the E-field

modes are real and orthonormal: g++g-=[M](Q+ +Q-)+zm[w][Y2]( ~’-g-)

Je (1,
,W,-e,nds = 8mn=

m=~

o, m+n
(6)

s,

where the integration is over the cross section S’, of the i th

guide.

The various modal amplitudes UH* and c; in (l)-(4) are

related by means of the modal scattering matrix [S] of the

junction. In matrix notation

where g * and g * denote column matrices whose n th and

m th elements are an+ and c; respectively.

III. E-FIELD MATCHING AT THE JUNCTION

(11)

(12)

(13)

where [ Y2] is the modal admittance matrix of guide 2,

which for low losses we will assume is diagonal.

IV. CONSERVATION OF COMPLEX POWER

AT THE JUNCTION

With reference to Fig. 2, the complex power PI passing

from guide 1 must be equal to the complex power Pq

flowing into guide 2 plus the complex power Pw flowing

into the wall W.

In guide 1 we have

PI= jE1x Hi*. ds (14)
SI

and using (1) and (2) at z = O_ we easilv obtain
At the junction (z = O) the transverse E field of the

-., . . .

larger guide 2 must satisfy P1=(g+– Q-)+[YJ(g++Q-) (15)

where, for a good conductor,

transverse wall W is

Zm= (l+

(in aperture A) where ~ indicates the Hermitian transpose operator
(8) ([A]t = [A*]T where T is the transpose operator).(on wall W)

Likewise in guide 2,
the surface impedance of the

P2=(O~+ )~[Y2]f(g++g -). (16)

r

al-l o
~) ~ (9) Moreover, the wall power can be written as

with u being the conductivity of the wall metal. PW= ZmjH2. H2* ds (17)

Substituting (l), (3), and (4) into (8), scalar multiplying w

by ez,,,, and integrating over S2 we obtain and using (4) and (12) we obtain

X (c;+ C; 1Je2qe2.1ds=~(aJ +aj)~el.. e2mds Pw=Zm(C- –g+)+[Y2]*[FV][ YJ(Gg +). (18)
q S2 ?1 A

Conservation of complex power dictates that
– Z.,~ (c; – c: )Y2q /e2q. e2mds. (10)

q w P1=P2+PW (19)
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and in view of (15), (16), and (18) we can write

(Q+-& )~[YJqg++ a-)—

+.%1[Y21+[W[Y21 (C--C+)}. (20)

Using (20), together with the E-field mode matching

equation (13), it is easy to show that

[M] T[Y2](g-- g+)= [Y1](Q+ -Q-) (21)

which, effectively, is the equation for H-field matching

over the aperture A only.

V. THE SCATTERING MATRIX [S]

OF THE LossY JUNCTION

If we assume that there is energy incident on the junc-

tion from guide 1 only, then ~+ = O in (13) and (21).

Moreover, it is shown in the Appendix that

[w] = [l]-[M][M]T (22)

and as a result (13) and (21) become

g-=[fl’f](g+ +g-)-zm[Y2]g- +zm[f14][A4]T[YJ~-

(23)

and

[fw]T[Y2]g- =[YJ(Q+ -Q-). (24)

Using (24) and (23) and defining an admittance matrix

[y~l = [341T[L]([~]+ Zn[L])-’[M] (25)

we can, after some algebra, show that

Q-=([Y,I -ZJHLI+[L1)-’

.([YJ-Zm[YL][Y1 ]-[ YL])g+. (26)

But with g+= O, and in view of (7) it follows that

[SIJ=([YJ- ZJYL][YJ+[YL])-l

([ Y1]-ZMIY~][Yl]- [Y~]). (27)

As in the lossless case ([1], [2]), we will now use the

E-field mode matching equation (23) to deduce [S21] in

terms of [ Sll]. Simple algebra leads to

[s2,]= ([ I]+ZJY2])-1

+i4]([Z]+Zm [YJ+([I],-Zm [YJ)[SIJ). (28)

A similar process whereby we assume that incidence is

from guide 2, with g+= O, permits us to obtain matrix

expressions for [S12] and [S22]:

[%I=WJ+[VI([ II-ZJYJ))-l

.[A4]T[Y2]([I] +Zm[Y2])-1 (29)

[~221=([zl+ zt[Y2])-1

([ M]([I]-z w1[Y1])[s,2]-([ I]+zm[Y2])). (30)

Of course, in the case of a perfectly conducting wall

Z~ ~ O and (28)-(30) simplify to more familiar [4, p. 1088]

expressions:

[%1 = ([ LI+[L,I)-l([YJ -[M)>

[s2,] = [M]([I]+[SIJ) (31)

[S21=WJ+[Y21) -l[WIU)

[s22] == [M][S12] -[1] (32)

where

[Ll=[~lT[y,l[~l. (33)

Another limiting case is that of a lossy short-circuiting

plate (A ~ O, W-+ S2). In this case [M]== O and only [S22]

is nonzero:

[s22] = ([ I]+zm[Y2])-l([z.,] [Y2]- [1]) (34)

and if Z,m ~ O, then [S22] = – [1], as expected.

VI. THE EFFECTSOF WAVEGIJIDE WALL LOSSES

In Section VII we will treat the cases of rectangular one-

and two-port cavity resonators witlh losses not only in the

transverse diaphragms and end plates but also in the walls

of the waveguide themselves. With such losses, not only do

the modal propagation constants become complex but, in

principle, the modes themselves become coupled [5, pp.

126-129]. A more detailed discussion is provided by

Gustincic [6]. But rather than proceeding in this direction

we will assume that the walls are very good conductors and

that the cross-coupling of the modal powers is negligible.

Moreover, only the dominant TEIO mode will be propa-

gating and we will assume that the waveguide wall losses

are due only to this mode since it has the largest ampli-

tude, especially for high-Q cavities with small coupling

holes. Consequently, in the generalized scattering matrix

formulas [2], [3] used to calculate the overall scattering

matrix [SC] of a cascade of two or more transverse junc-

tions, it will be assumed that the TE ~0 mode has a complex

propagation constant y~~ = a~~ + j~~~ and all other cut-

off modes have real propagation constants. For a rectangu-

lar guide of width a and height b.

(35)

VII. LossY RECTANGULAR. CAVITIES WITH

CIRCULAR COUPLING HOLES

In a previous paper [4] the authors considered the case

of scattering at lossless circular-tcl-rectangular waveguide

junctions, in particular a thin diaphragm with a centered
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Fig. 3, (a) Thm diaphragm with centered circular hole in rectangular
waveguide. (b) The equwalent transmission line circuit.
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Fig. 4. Equivalent shunt admittance (normalized) of a thin lossy di-
aphragm with a centered circular hole m X-band wavegmde.

circular hole in rectangular guide. Before dealing with

cavities, let us consider the effect of wall losses on the

equivalent admittance of such a diaphragm (illustrated in
Fig. 3). Using the generalized scattering matrix technique

as described in [4] but with the various component matri-

ces now generalized to include wall losses, as specified by

(27)-(30), a computer program was developed to calculate

the equivalent normalized shunt admittance of the lossy

diaphragm:

YD
—=~~=~~+j~~.
Y1;E

Not surprisingly, ~~ differs very little

tained in [4] for the lossless case. For

(37)

from that ob-

a thin copper

..4_L11-zE3zcL
L--d J a=2.25 b

Fig 5. An X-band rectangular waveguide cavity with centered circular

coupling holes in thick transverse diaphragms
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Fig, 6. Transmission coefficient ~ versus frequency for a rectangular

X-band cavity of length d = 2,0 cm with ms radius R = 3b/8 and wall

conductivity of o = 5.8 106 S/m (copper).

diaphragm with u = 5.8X 107 S/m, the calculated normal-

ized admittance ~~ is illustrated in Fig. 4 for X-band guide

(a= 2.286 cm).

We next consider the case of a copper rectangular X-

band waveguide cavity formed by two identical di-

aphragms spaced 2.0 cm apart, as shown in Fig. 5. The

rather large centered circular holes are of radius R = 3b/8.

Fig. 6 provides the computed transmission coefficient ~

through the cavity as a function of frequency for the

zero-thickness diaphragm case (1= O) and for a “ thick”

diaphragm (1= 0.02 b). In both cases there is relatively

little insertion loss at resonance but the thicker diaphragm—
with larger BD has raised the resonant frequency, nar-
rowed the bandwidth, and increased the insertion loss

slightly.

The loss is more pronounced for a radius R = b/4; the

diaphragms each provide a reflection coefficient for the

TEIO mode of 0.998. The transmission coefficients r for

both the loss and the no loss case are given in Fig. 7. At

resonance the insertion loss for the former is 1.6 dB.

Finally, we turn to a one-port cavity resonator formed

by short-circuiting one end of a rectangular X-band guide

and inserting a diaphragm with a centered circular hole at

a distance d = 2.0 cm from the short, as shown in Fig. 8.

Collin [5, pp. 329–336] uses a transmission line model to
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Fig. 7. Transmission coefficient 7 versus frequency forlossand no loss

cases. The X-band rectangular cavity is of length d=2.O cm with iris
radius R= b/4. The diaphragm is infinitely thin.

analyze the structure. With a shunting reactance due to the

diaphragm ~~( ~ ), calculated from the small hole theory

[5, pp. 190-194], the resonance propagation constant &

satisfies

8R3po
zL(&J = ~= –tan(&d). (38)

Moreover, the cavity has a normalized input impedance

.z,n(@) =
– E(BO)

/3@(u -~. - joo/2Q)
(39)

for u = ~. and ~~ = d~/da at Q = @o. In (39) Q is the

unloaded Q for a completely closed rectangular cavity with

wall losses [5, p. 325].

For ~he 2 cm cavity and for the case of critical coupling

when Z,.( Uo) = 1 at resonance it turns out that

{

uob:d
ZLO = — = 0.0187

2Q
(if d= 2.0 cm) (40)

and corresponds to an aperture radius of R = 0.2155b and

an unloaded Q of 7840. The ‘magnitude and phase of the

resonator’s reflection coefficient p, as deduced from ~,~( ~)

for critical coupling, is plotted in Fig. 9, where we see that

resonance occurs at 9.9233 GHz.

Using the present full-wave CCPT analysis, the radius R

of the diaphragm’s circular hole was varied numerically

until the critical coupling value R = 0.2032b was found. A

plot of the resonator’s reflection coefficient p for this case

(using the full-wave CCPT) is also shown in Fig. 9. A
higher resonance frequency of 9.9295 GHz is noted and is

due to the slightly smaller aperture. The narrower band-

width indicates a higher unloaded Q. For critical coupling

Q = 2QL = 2fo/Af, where Af is the 3 dB bandwidth. In
our present case we calculate an unloaded Q of 10800,

much larger than the Q = 7840 used in the simple trans-

THIN DIAPHRAGM
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/APERTURE SHORT
-----

r t
T

CIRCUITING
PLATE

2Rf b
‘, I I

L--- ~=z~ cm --..-.4
(a)

Sc

~d.. -l
(b)

Fig. 8. (a) An X-band cavity resonator with a centered circular cou-
pling aperture of radius R. (b) The transmission line equivalent circuit.
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Fig. 9. Reflection coefficient p versus frequency for the X-band cavity
resonator of Fi{;, 8.

mission line theory. This is probably because the latter Q

does not include the stored energy of the higher order

modes that exist in the neighborhood of the circular aper-

ture and because the CCPT solution neglects the losses of

these modes.

VIII. CONCLLISIONS

This paper has extended the conservation of complex

power technique (CCPT) to include the effects of the large

but not infinite conductivities of the transverse metallic

surfaces at waveguide junctions. Incorporating the surface

impedance Z~, the resulting expressions for the scattering

matrices of such lossy junctions are necessarily more com-

plex than those for the lossless case. Nevertheless they can

be straightforwardly implemented in computer code. The

numerical examples that we have presented for the cases of

X-band cavity resonators with circular coupling holes con-

firm the validity of this extension of the CCPT. Moreover

it is important to remark that this formulation that has

resulted in the expressions for the lossy junction’s scatter-



378 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 38, NO. 4, APRIL 1990

ing matrix [S] (see equations (27)–(30)) is general and

applicable to a wide variety of waveguide scattering prob-

lems.

APPENDIX

THE RELATION BETWEEN [W] AND [M]

The matrix [W’] of Section III has as its mn th element

J%,l = je2.,”e2nds (Al)
w

.
-J

e2m. e2nds – ~ezm.ezn ds (A2)
S* S1

since the aperture A is also the cross section S1 of guide 1.

Over SI we can expand ez~ in terms of the complete set

of modal functions el~ in guide 1:

e2nt = EMm,el, (A3)

q

where M~q is defined by (12). Using this modal expansion

for both ezti and ez,, in (A2), together with the orthogonal-

ity property of ez~ over Sz, we can immediately rewrite

(A2) as

[4]

[5]

[6]

IEEE Trans. Microwave Theory Tech., vol. MTT30, pp. 199-201,

Feb. 1982.
J, D. Wade and R, H, MacPhie, “Scattering at circular-to-rectangu-
lar waveguide junctions,” IEEE Trans. Microwave Theorv Tech., vol.

MTT-34, pp. 1085-1091, Nov. 1986.

R. E. Collin, Foundations jor Microwave Engineering. New York:
McGraw-Hill, 1966.

J. J. Gustincic, “A general power loss method for attenuation of
cavities and waveguides,” IEEE Trans. Miwowave Theo~ Tech., vol.

MTT1l, pp. 83-87, Jan. 1963.
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Orthogonality

rewrite (A4) as

which. in matrix

[1]

[2]

[3]

qr -f/

of the elq functions over

Win,, = dmn – ~MmqMnq

q

S1 allows us to

(A5)

form, is given by (22) of Section V.
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