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Conservation of Complex Power Technique for
Waveguide Junctions with Finite
Wall Conductivity

J. DOUGLAS WADE, MEMBER, IEEE, AND ROBERT H. MACPHIE, SENIOR MEMBER, IEEE

Abstract —Scattering at the junction of two waveguides with finite wall
conductivity is rigorously treated using E-field mode matching and the
conservation of complex power technique. At the transverse junction
discontinuity between the two waveguides the complex power absorbed by
the junction wall is taken into account along with the usual transfer of
complex power from one guide to the other. This leads to a generalized
form of the scattering matrix [S] of the lossy junction which incorporates
the surface impedance Z,, of the transverse metallic wall, assumed to be a
good conductor. The specific case of a copper transverse diaphragm with
centered circular iris in X-band guide is considered and the equivalent
TE,, shunt admittance is computed. Numerical results are also given for
lossy X-band cavity resonators with circular coupling holes.

1. INTRODUCTION

N RECENT YEARS a considerable number of wave-

guide scattering problems have been successfully han-
dled in a rigorous fashion by combining mode matching of
the transverse electric fields at a given waveguide junction
with enforcement of the conservation of complex power at
the same discontinuity [1]-[3]. This conservation of com-
plex power technique (CCPT) has, in particular, provided
a formally exact solution to the problem of scattering at
circular-to-rectangular waveguide junctions and to the re-
lated problem of scattering at a thick diaphragm with a
circular coupling hole in a rectangular waveguide [4].

However, in this and all earlier work, the walls of both
the waveguides themselves and of the transverse disconti-
nuities, e.g. diaphragms, were assumed to be perfectly
conducting. This is quite valid for a large number of cases
such as simple junctions between waveguides of different
cross sections or at single diaphragms. For good conduc-
tors (copper, silver) the scattering matrices of such config-
urations would be virtually identical to those for the ideal-
ized perfectly conducting case. For cavity resonators and
filters, however, the wall losses on both the end plates and
on the waveguide walls themselves are significant.

It is the purpose of this paper to extend the conservation
of complex power technique to include the effects of the
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Fig. 1. (a) The junction of two waveguides. (b) The junction plane at

z=0.

conductivity of the metal from which such waveguide
components are fabricated. Particular attention will be
paid to the circular-to-rectangular waveguide junction
problems treated in [4] for the lossless case, but the gener-
alization is valid for virtually any problem which can be
treated by the original conservation of complex power
technique.

II. MobpAL EXPANSIONS OF THE FIELDS
Consider a junction of two waveguides at z=0, as
shown in Fig. 1. In guide 1 the transverse electric and
magnetic fields at z=0_ can be written as

Et1=Z(a:+an_)e1n (1)

(2)

H,=3Y (a; —a; )Y,z Xey,.

n

Similarly, in guide 2, just to the right of the junction at
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z=0_,, we have
E,= Z(c;+c;)e2q

3)
(4)

q
Hy= % (e~ ] ot xes,
q
In (1)-(4) a time dependence of exp(jwt) is assumed and
+ and — indicate waves which are incident on and
reflected from the junction respectively. The vector func-
tions e, and e,, are the transverse modal E fields (TE
and /or TM) in guides 1 and 2 respectively, and the modal
admittances are

‘YI m

, (TE modes)
JWR,
Yom=14 (5)
JWE,
(TM modes)
Yim
for m=1,2,3,--- and i=1,2.

In this paper we assume that the losses are due to wall
conductivity and so the permeability g, and permittivity e,
in (5) are both real. The modal propagation constant v,,,, is
complex due to the wall losses.

However, we will make the reasonable assumption that
the wall losses are relatively small and that the E-field
modes are real and orthonormal:

1, m=n
!el",- e,ds=9,, = {O, Mt (6)

where the integration is over the cross section S, of the ith
guide. ’

The various modal amplitudes ¢ and ¢ in (1)-(4) are
related by means of the modal scattering matrix [S] of the

junction. In matrix notation
a _ [Su] [Su] a”®
[Qﬁ]-[[sn] [Szz]][£+} (7)

where a* and ¢* denote column matrices whose nth and
mth elements are a,° and ¢} respectively.

III. E-FIELD MATCHING AT THE JUNCTION
At the junction (z=0) the transverse E field of the
larger guide 2 must satisfy
E in aperture A
EI2 - 1 ( p ) ( 8)
Z,zx H, (on wall W)

where, for a good conductor, the surface impedance of the
transverse wall W is

o,

s ()

with o being the conductivity of the wall metal.
Substituting (1), (3), and (4) into (8), scalar multiplying
by e,,,. and integrating over S, we obtain

Z(Ct[_+ct;r)erq'eandS:Z(a:_‘_a;)/eln'eZmds
S: n A

q S,

Z,=(1+j)

=2, (c; =) ), [erper,ds. (10)
q w

K z
GUIDE 1
F’1 = F’2 + R
GUIDE 2
Fig. 2. Conservation of complex power at the junction of two wave-
guides.

Due to mode orthogonality this simplifies to

mteh=YM,(a}+a;)+Z, YW, Y, (c;—c;)
n q

(11)

where
M, = fe2m-e1nds, Wy = fezm-ezqu. (12)
4 W

In matrix notation we can rewrite (11) as follows:
¢+ =[M](a"+a" )+ Z,[W][N](c"—c7) (13)

where [Y,] is the modal admittance matrix of guide 2,
which for low losses we will assume is diagonal.

IV. CONSERVATION OF COMPLEX POWER
AT THE JUNCTION

With reference to Fig. 2, the complex power P, passing
from guide 1 must be equal to the complex power P,
flowing into guide 2 plus the complex power P, flowing
into the wall W.

In guide 1 we have

P = [ExH ds (14)
5

and using (1) and (2) at z = 0_ we easily obtain

P=(a*—a ) [1]'(a*+a) (15)

where 1 indicates the Hermitian transpose operator
([4]T=[A4*]" where T is the transpose operator).
Likewise in guide 2,

Py=(c =)' [n] (e +c). (16)
Moreover, the wall power can be written as
Py =7, [ Hy Hx ds (17)
/4

and using (4) and (12) we obtain
Py=2,(c ~ ) B WL —c*). (18)
Conservation of complex power dictates that

P =pP+P, (19)
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and in view of (15), (16), and (18) we can write
(at—a ) [%]'(a*+2a7)
= (=) (c+c*)
+Z LI -¢)} (20
Using (20), together with the E-field mode matching
equation (13), it is easy to show that
[M]T[%)(c—c*)=[l(a*-a ) (20)
which, effectively, is the equation for H-field matching
over the aperture A only.
V. THE SCATTERING MATRIX [S]
OF THE Lossy JuNcTION

If we assume that there is energy incident on the junc-
tion from guide 1 only, then ¢*=0 in (13) and (21).
Moreover, it is shown in the Appendix that

(Wl=111-[M][M]"

and as a result (13) and (21) become

(22)

c~=[Ml(a*+a )= Z, [Vl + Z,[M][M]"[V,]c"

(23)
and
[M]T[V]e =[N](a*—a). (24)
Using (24) and (23) and defining an admittance matrix

[Y.]=[M]"[B)([1]+2,[%])" (25)
we can, after some algebra, show that
a = ([Yl]_zm[YL][Y1]+[YL])_1
(In]-Zz, [ ]n]-[Yv.Dat. (26)
_But with ¢ =0, and in view of (7) it follows that
[Sul=([V]- 2, [v][n]+[y, )~
'([Y1] Z [YL [Yl [Y ]) (27)

As in the lossless case ([1], [2]), we will now use the
E-field mode matching equation (23) to deduce [S,] in
terms of [S};]. Simple algebra leads to

[S21] = ([I] + Zm[YzD
AMI[11+ Z, ]+ (1]-z, In])su]). (28)

A similar process whereby we assume that incidence is
from guide 2, with g* =0, permits us to obtain matrix
expressions for [S;,] and [S,,]:

-1

[Su]=2([%]+[¥)([]-Z,[%])
MG+ 2, (5] (29)
[Sp]=([11+2,[%])"
(IMY([1] - Z, (6 DIS] - ([11+ 2,[5%]). (30)
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Of course, in the case of a perfectly conducting wall
Z,,— 0 and (28)—(30) simplify to more familiar {4, p. 1088]
expressions:

. -1
[Su] = ([Y1] + [YLI]) ([Y1]"' [Yu])’

[S21] = [M]([I] + [Su]) (31)

[Sp]=2([n]+[%]) ' [M][Y,],
[Spl=[M][S,]-[1] (32)
where
[Ya]=[M]"[V,])[M]. (33)

Another limiting case is that of a lossy short-circuiting
plate (4 — 0, W— S§,). In this case [M] = 0 and only [S,,]
is nonzero:

- 1 |
and if Z, — 0, then [S,,]=

(34)
—[1]. as expected.

VI. THE EFFeCTS OF WAVEGUIDE WALL LOSSES

In Section VII we will treat the cases of rectangular one-
and two-port cavity resonators with losses not only in the
transverse diaphragms and end plates but also in the walls
of the waveguide themselves. With such losses, not only do
the modal propagation constants become complex but, in
principle, the modes themselves become coupled [5, pp.
126-129]. A more detailed discussion is provided by
Gustincic [6]. But rather than proceeding in this direction
we will assume that the walls are very good conductors and
that the cross-coupling of the modal powers is negligible.

Moreover, only the dominant TE,; mode will be propa-
gating and we will assume that the waveguide wall losses
are due only to this mode since il has the largest ampli-
tude, especially for high-Q cavities with small coupling
holes. Consequently, in the generalized scattering matrix
formulas [2], [3] used to calculate the overall scattering
matrix [S,] of a cascade of two or more transverse junc-
tions, it will be assumed that the TLlO mode has a complex
propagation constant v,y = et + jBLE and all other cut-
off modes have real propagation constants. For a rectangu-
lar guide of width @ and height b.

T2
=y e 2] (35)
. ar 2
2b(—) + aw’pe

TE a

oy = — 36
10 abBTE2wpo (36)

if off < BIE
VII. Lossy RECTANGULAFR. CAVITIES WITH

CIrRcULAR CoUPLING HOLES

In a previous paper [4] the authors considered the case
of scattering at lossless circular-tc-rectangular waveguide
junctions, in particylar a thin diaphragm with a centered
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Fig. 3. (a) Thin diaphragm with centered circular hole in rectangular

waveguide. (b) The equivalent transmission line circuit.
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Fig. 4. Equivalent shunt admittance (normalized) of a thin lossy di-
aphragm with a centered circular hole in X-band waveguide.

circular hole in rectangular guide. Before dealing with
cavities, let us consider the effect of wall losses on the
equivalent admittance of such a diaphragm (illustrated in
Fig. 3). Using the generalized scattering matrix technique
as described in [4] but with the various component matri-
ces now generalized to include wall losses, as specified by
(27)—(30), a computer program was developed to calculate
the equivalent normalized shunt admittance of the lossy
diaphragm:

(37)

Not surprisingly, B,, differs very little from that ob-
tained in [4] for the lossless case. For a thin copper
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Fig 5. An X-band rectangular waveguide cavity with centered circular
coupling holes in thick transverse diaphragms
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Fig. 6. Transmission coefficient 7 versus frequency for a rectangular
X-band cavity of length d = 2.0 cm with 1nis radius R =35/8 and wall
conductivity of o =5.8-10° S/m (copper).
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diaphragm with o = 5.8 X107 S/m, the calculated normal-
ized admittance Y}, is illustrated in Fig. 4 for X-band guide
(a=2.286 cm).

We next consider the case of a copper rectangular X-
band waveguide cavity formed by two identical di-
aphragms spaced 2.0 cm apart, as shown in Fig. 5. The
rather large centered circular holes are of radius R = 35 /8.
Fig. 6 provides the computed transmission coefficient 7
through the cavity as a function of frequency for the
zero-thickness diaphragm case (/=0) and for a “thick”
diaphragm (/=0.02b). In both cases there is relatively
little insertion loss at resonance but the thicker diaphragm
with larger B, has raised the resonant frequency, nar-
rowed the bandwidth, and increased the insertion loss
slightly.

The loss is more pronounced for a radius R = b/4; the
diaphragms each provide a reflection coefficient for the
TE;, mode of 0.998. The transmission coefficients 7 for
both the loss and the no loss case are given in Fig. 7. At
resonance the insertion loss for the former is 1.6 dB.

Finally, we turn to a one-port cavity resonator formed
by short-circuiting one end of a rectangular X-band guide
and inserting a diaphragm with a centered circular hole at
a distance d = 2.0 cm from the short, as shown in Fig. 8.
Collin [5, pp. 329-336] uses a transmission line model to
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Fig. 7. Transmission coefficient 7 versus frequency for loss and no loss
cases. The X-band rectangular cavity is of length d = 2.0 cm with iris
radius R = b/4. The diaphragm is infinitely thin.

9.87

analyze the structure. With a shunting reactance due to the
diaphragm X, (B), calculated from the small hole theory
{5, pp. 190-194], the resonance propagation constant 3,
satisfies

— 8RB,
X, (By) = 3ab = —tan(B,d). (38)
Moreover, the cavity has a normalized input impedance
- JX,L2 (:Bo)

Z =

n(©) Bed (0= o= juo/20) (39)
for w=0w, and B{=dB/dw at w=w, In (39) Q is the
unloaded Q for a completely closed rectangular cavity with
wall losses [5, p. 325].

For the 2 cm cavity and for the case of critical coupling
when Z, (w,) =1 at resonance it turns out that

_ woBsd
szw/ 025 =0.0187 (if d=2.0cm) (40)

and corresponds to an aperture radius of R = 0.2155b and
an unloaded Q of 7840. The magnitude and phase of the
resonator’s reflection coefficient p, as deduced from Z, (w)
for critical coupling, is plotted in Fig. 9, where we see that
resonance occurs at 9.9233 GHz.

Using the present full-wave CCPT analysis, the radius R
of the diaphragm’s circular hole was varied numerically
until the critical coupling value R = 0.20325 was found. A
plot of the resonator’s reflection coefficient p for this case
(using the full-wave CCPT) is also shown in Fig. 9. A
higher resonance frequency of 9.9295 GHz is noted and is
due to the slightly smaller aperture. The narrower band-
width indicates a higher unloaded Q. For critical coupling
Q=20,=2f,/Af, where Af is the 3 dB bandwidth. In
our present case we calculate an unloaded Q of 10800,
much larger than the Q = 7840 used in the simple trans-
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Fig. 8. (a) An X-band cavity resonator with a centered circular cou-
pling aperture of radius R. (b) The transrnission line equivalent circuit.
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Fig. 9. Reflection coefficient p versus frequency for the X-band cavity
resonator of Fig. 8.

mission line theory. This is probably because the latter Q
does not include the stored energy of the higher order
modes that exist in the neighborhood of the circular aper-
ture and because the CCPT solution neglects the losses of
these modes. '

VIIL

This paper has extended the conservation of complex
power technique (CCPT) to include the effects of the large
but not infinite conductivities of the fransverse metallic
surfaces at waveguide junctions. Incorporating the surface
impedance Z,, the resulting expressions for the scattering
matrices of such lossy junctions are necessarily more com-
plex than those for the lossless case. Nevertheless they can
be straightforwardly implemented in computer code. The
numerical examples that we have presented for the cases of
X-band cavity resonators with circular coupling holes con-
firm the validity of this extension of the CCPT. Moreover
it is important to remark that this formulation that has
resulted in the expressions for the lossy junction’s scatter-

CONCLUSIONS
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ing matrix [S] (see equations (27)—(30)) is general and
applicable to a wide variety of waveguide scattering prob-
lems.

~ APPENDIX
THE RELATION BETWEEN [W] AND [ M]

The matrix [W] of Section III has as its mnth element

Wmn = _/-eZHz'eZn ds (A]')
w
= /ezm-ez,l ds — erm-eZn ds (A2)
S, Sy

since the aperture A is also the cross section S; of guide 1.
Over S, we can expand e,,, in terms of the complete set
of modal functions e,, in guide 1:

€rm= Z Mmqelq
q

where M, is defined by (12). Using this modal expansion
for both e,,, and e,, in (A2), together with the orthogonal-
ity property of e,, over S,, we can immediately rewrite
(A2) as

Wmn = 8mn - Z ZMqunrfelq' €y, ds. (A4)
q r S

- Orthogonality of the e;, functions over S, allows us to
rewrite (A4) as
= 8mn - ZMqunq
q

(A5)

mn

which, in matrix form, is given by (22) of Section V.
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